
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS

Winter 2017

CS193p

Winter 2017

Today
Error Handling in Swift
try

Extensions
A simple, powerful, but easily overused code management syntax

Protocols
Last (but certainly not least important) typing mechanism in Swift

Delegation
An important use of protocols used throughout the iOS frameworks API

Scroll View
Scrolling around in and zooming in on big things on a small screen

CS193p

Winter 2017

Thrown Errors
In Swift, methods can throw errors

You will always know these methods because they’ll have the keyword throws on the end.
func save() throws
You must put calls to functions like this in a do { } block and use the word try to call them.
do {

try context.save()
} catch let error {

// error will be something that implements the Error protocol, e.g., NSError
// usually these are enums that have associated values to get error details
throw error // this would re-throw the error (only ok if the method we are in throws)

}

If you are certain a call will not throw, you can force try with try! …
try! context.save() // will crash your program if save() actually throws an error
Or you can conditionally try, turning the return into an Optional (which will be nil if fail) …
let x = try? errorProneFunctionThatReturnsAnInt() // x will be Int?

CS193p

Winter 2017

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}
… it can be used to clean up prepare(for segue:, sender:) code …

For example, this adds a method contentViewController to UIViewController …

var destination: UIViewController? = segue.destinationViewController
if let navcon = destination as? UINavigationController {
 destination = navcon.visibleViewController
}
if let myvc = destination as? MyVC { … }

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}

CS193p

Winter 2017

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}
… it can be used to clean up prepare(for segue:, sender:) code …

if let myvc = segue.destinationViewController.contentViewController as? MyVC { … }

For example, this adds a method contentViewController to UIViewController …

CS193p

Winter 2017

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}

For example, this adds a method contentViewController to UIViewController …

Notice that when it refers to self, it means the thing it is extending (UIViewController).

CS193p

Winter 2017

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

There are some restrictions
You can’t re-implement methods or properties that are already there (only add new ones).
The properties you add can have no storage associated with them (computed only).

This feature is easily abused
It should be used to add clarity to readability not obfuscation!
Don’t use it as a substitute for good object-oriented design technique.
Best used (at least for beginners) for very small, well-contained helper functions.
Can actually be used well to organize code but requires architectural commitment.
When in doubt (for now), don’t do it.

CS193p

Winter 2017

Protocols
Protocols are a way to express an API more concisely

Instead of forcing the caller of an API to pass a specific class, struct, or enum,
an API can let callers pass any class/struct/enum that the caller wants
but can require that they implement certain methods and/or properties that the API wants.

To specify which methods and properties the API wants, the API is expressed using a protocol.
A protocol is simply a collection of method and property declarations.

A protocol is a TYPE
It can be used almost anywhere any other type is used: vars, function parameters, etc.

The implementation of a Protocol’s methods and properties
The implementation is provided by an implementing type (any class, struct or enum).
Because of this, a protocol can have no storage associated with it

(any storage required to implement the protocol is provided by an implementing type).
It is also possible to add implementation to a protocol via an extension to that protocol

(but remember that extensions also cannot use any storage)

CS193p

Winter 2017

Protocols
There are three aspects to a protocol

1. the protocol declaration (which properties and methods are in the protocol)
2. a class, struct or enum declaration that claims to implement the protocol
3. the code in said class, struct or enum that implements the protocol

Optional methods in a protocol
Normally any protocol implementor must implement all the methods/properties in the protocol.
However, it is possible to mark some methods in a protocol optional

(don’t get confused with the type Optional, this is a different thing).
Any protocol that has optional methods must be marked @objc.
And any optional-protocol implementing class must inherit from NSObject.
These sorts of protocols are used often in iOS for delegation (more later on this).
Except for delegation, a protocol with optional methods is rarely (if ever) used.
As you can tell from the @objc designation, it’s mostly for backwards compatibility.

CS193p

Winter 2017

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

CS193p

Winter 2017

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2

CS193p

Winter 2017

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set

CS193p

Winter 2017

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

CS193p

Winter 2017

Declaration of the protocol itself
protocol SomeProtocol : class, InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

(unless you are going to restrict your protocol to class implementers only with class keyword)

CS193p

Winter 2017

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

(unless you are going to restrict your protocol to class implementers only with class keyword)
You can even specify that implementers must implement a given initializer

CS193p

Winter 2017

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol {

 // implementation of SomeClass here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class

CS193p

Winter 2017

enum SomeEnum : SomeProtocol, AnotherProtocol {

 // implementation of SomeEnum here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part

CS193p

Winter 2017

struct SomeStruct : SomeProtocol, AnotherProtocol {

 // implementation of SomeStruct here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part

CS193p

Winter 2017

How an implementer says “I implement that protocol”
struct SomeStruct : SomeProtocol, AnotherProtocol {

 // implementation of SomeStruct here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum

CS193p

Winter 2017

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol {

 // implementation of SomeClass here, including …

 required init(…)
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)

CS193p

Winter 2017

How an implementer says “I implement that protocol”
extension Something : SomeProtocol {

 // implementation of SomeProtocol here

 // no stored properties though

}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)
You are allowed to add protocol conformance via an extension

CS193p

Winter 2017

Using protocols like the type that they are!

Protocols
protocol Moveable {

mutating func move(to point: CGPoint)

}

class Car : Moveable {

func move(to point: CGPoint) { … }

func changeOil()

}

struct Shape : Moveable {

mutating func move(to point: CGPoint) { … }

func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Winter 2017

Using protocols like the type that they are!

Protocols
protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Winter 2017

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.moveTo(…)

thingToMove.changeOil()

thingToMove = square

let thingsToMove: [Moveable] = [prius, square]

func slide(slider: Moveable) {

 let positionToSlideTo = …

 slider.moveTo(positionToSlideTo)

}

slide(prius)

slide(square)

func slipAndSlide(x: Slippery & Moveable)

slipAndSlide(prius)

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Winter 2017

Advanced use of Protocols
Mixing in generics makes protocols even more powerful

Protocols can be used to restrict a type that a generic can handle
Consider the type that was “sort of” Range<T> … this type is actually …
struct Range<Bound: Comparable> {

let lowerBound: Bound
let upperBound: Bound

}
Comparable is a protocol which dictates that the given type must implement greater/less than
That’s how Range can know that its lowerBound is less than its upperBound
(And it can know this regardless of whether it’s a Range of Ints or Characters or Floats)

Making a protocol that itself uses generics is also a very leveraged API design approach
Many, many protocols in Swift’s standard library are declared to operate on generic types

CS193p

Winter 2017

Advanced use of Protocols
“Multiple inheritance” with protocols

Consider the struct CountableRange (i.e. what you get with 3..<5) …
This struct implements MANY protocols (here are just a few):
IndexableBase — startIndex, endIndex, index(after:) and subscripting (e.g. [])
Indexable — index(offsetBy:)
BidirectionalIndexable — index(before:)
Sequence — makeIterator (and thus supports for in)
Collection — basically Indexable & Sequence

Why do it this way?
Because Array, for example, also implements all of these protocols.
So now you can create generic code that operates on a Collection and it will work on both!
Dictionary is also a Collection, as is Set and String.UTF16View.
But wait, there’s more …

CS193p

Winter 2017

Advanced use of Protocols
Extensions also contribute to the power of protocols

An extension can be used to add default implementation to a protocol.
Since there’s no storage, said implementation has to be in terms of other API in the protocol
(although that other API might well be inherited from another protocol).

For example, for the Sequence protocol, you really only need to implement makeIterator.
(An iterator implements the IteratorProtocol which just has the method next().)
If you do, you will automatically get implementations for all these other methods in Sequence:
contains(), forEach(), joined(separator:), min(), max(), even filter() and map(), et. al.

All of these are implemented via an extension to the Sequence protocol.
This extension (provided by Apple) uses only Sequence protocol methods in its implementation.

Functional Programming
By combining protocols with generics and extensions (default implementations),

you can build code that focusses more on the behavior of data structures than storage.
Again, we don’t have time to teach functional programming, but this is a path towards that.

CS193p

Winter 2017

Another Example Protocol
Converting to a String

A data structure implementing the protocol CustomStringConvertible will print with \()

protocol CustomStringConvertible {
 var description: String { get }
}
You could make a CalculatorBrain print with \() just by adding this to its declaration:

struct CalculatorBrain: CustomStringConvertible

This works because CalculatorBrain already implements that description var.

CS193p

Winter 2017

Controller

View
delegate

data source

should

will did

countdata
at

Delegation
A very important (simple) use of protocols

It’s a way to implement “blind communication” between a View and its Controller

CS193p

Winter 2017

Delegation
A very important (simple) use of protocols

It’s a way to implement “blind communication” between a View and its Controller

How it plays out …
1. A View declares a delegation protocol (i.e. what the View wants the Controller to do for it)
2. The View’s API has a weak delegate property whose type is that delegation protocol
3. The View uses the delegate property to get/do things it can’t own or control on its own
4. The Controller declares that it implements the protocol
5. The Controller sets self as the delegate of the View by setting the property in #2 above
6. The Controller implements the protocol (probably it has lots of optional methods in it)

Now the View is hooked up to the Controller
But the View still has no idea what the Controller is, so the View remains generic/reusable

This mechanism is found throughout iOS
However, it was designed pre-closures in Swift. Closures are often a better option.

CS193p

Winter 2017

Delegation
Example
UIScrollView (which we’ll talk about in a moment) has a delegate property …
weak var delegate: UIScrollViewDelegate?

The UIScrollViewDelegate protocol looks like this …
@objc protocol UIScrollViewDelegate {

optional func scrollViewDidScroll(scrollView: UIScrollView)
optional func viewForZooming(in scrollView: UIScrollView) -> UIView

… and many more …
}

A Controller with a UIScrollView in its View would be declared like this …
class MyViewController : UIViewController, UIScrollViewDelegate { … }
… and in its viewDidLoad() or in the scroll view outlet setter, it would do …
scrollView.delegate = self
… and it then would implement any of the protocol’s methods it is interested in.

CS193p

Winter 2017

Adding subviews to a normal UIView ...
view.addSubview(logo)
logo.frame = CGRect(x: 300, y: 50, width: 120, height: 180)

CS193p

Winter 2017

CS193p

Winter 2017

Adding subviews to a UIScrollView ...
scrollView.contentSize = CGSize(width: 3000, height: 2000)

CS193p

Winter 2017

CS193p

Winter 2017

Adding subviews to a UIScrollView ...

scrollView.addSubview(logo)

scrollView.contentSize = CGSize(width: 3000, height: 2000)
logo.frame = CGRect(x: 2700, y: 50, width: 120, height: 180)

CS193p

Winter 2017

CS193p

Winter 2017

Adding subviews to a UIScrollView ...
aerial.frame = CGRect(x: 150, y: 200, width: 2500, height: 1600)
scrollView.contentSize = CGSize(width: 3000, height: 2000)

scrollView.addSubview(aerial)

CS193p

Winter 2017

CS193p

Winter 2017

Adding subviews to a UIScrollView ...
aerial.frame = CGRect(x: 150, y: 200, width: 2500, height: 1600)
scrollView.contentSize = CGSize(width: 3000, height: 2000)

scrollView.addSubview(aerial)

CS193p

Winter 2017

CS193p

Winter 2017

Scrolling in a UIScrollView ...

CS193p

Winter 2017

CS193p

Winter 2017

Scrolling in a UIScrollView ...

CS193p

Winter 2017

CS193p

Winter 2017

Scrolling in a UIScrollView ...

CS193p

Winter 2017

CS193p

Winter 2017

Positioning subviews in a UIScrollView ...

CS193p

Winter 2017

CS193p

Winter 2017

Positioning subviews in a UIScrollView ...

CS193p

Winter 2017

aerial.frame = CGRect(x: 0, y: 0, width: 2500, height: 1600)

CS193p

Winter 2017

Positioning subviews in a UIScrollView ...

CS193p

Winter 2017

aerial.frame = CGRect(x: 0, y: 0, width: 2500, height: 1600)
logo.frame = CGRect(x: 2300, y: 50, width: 120, height: 180)

CS193p

Winter 2017

Positioning subviews in a UIScrollView ...

CS193p

Winter 2017

aerial.frame = CGRect(x: 0, y: 0, width: 2500, height: 1600)
logo.frame = CGRect(x: 2300, y: 50, width: 120, height: 180)
scrollView.contentSize = CGSize(width: 2500, height: 1600)

CS193p

Winter 2017

That’s it!

CS193p

Winter 2017

CS193p

Winter 2017

That’s it!

CS193p

Winter 2017

CS193p

Winter 2017

That’s it!

CS193p

Winter 2017

CS193p

Winter 2017

That’s it!

CS193p

Winter 2017

CS193p

Winter 2017

Where in the content is the scroll view currently positioned?

contentOffset.x

contentOffset.y

let upperLeftOfVisible: CGPoint = scrollView.contentOffset
In the content area’s coordinate system.

CS193p

Winter 2017

What area in a subview is currently visible?
let visibleRect: CGRect = aerial.convert(scrollView.bounds, from: scrollView)

Why the convertRect? Because the scrollView’s bounds are in the scrollView’s coordinate system.
And there might be zooming going on inside the scrollView too …

CS193p

Winter 2017

UIScrollView
How do you create one?

Just like any other UIView. Drag out in a storyboard or use UIScrollView(frame:).
Or select a UIView in your storyboard and choose “Embed In -> Scroll View” from Editor menu.

To add your “too big” UIView in code using addSubview …
if let image = UIImage(named: “bigimage.jpg”) {

let iv = UIImageView(image: image) // iv.frame.size will = image.size
scrollView.addSubview(iv)

}
Add more subviews if you want.
All of the subviews’ frames will be in the UIScrollView’s content area’s coordinate system
(that is, (0,0) in the upper left & width and height of contentSize.width & .height).

Now don’t forget to set the contentSize
Common bug is to do the above lines of code (or embed in Xcode) and forget to say:

scrollView.contentSize = imageView.frame.size (for example)

CS193p

Winter 2017

UIScrollView
Scrolling programmatically
func scrollRectToVisible(CGRect, animated: Bool)

Other things you can control in a scroll view
Whether scrolling is enabled.
Locking scroll direction to user’s first “move”.
The style of the scroll indicators (call flashScrollIndicators when your scroll view appears).
Whether the actual content is “inset” from the content area (contentInset property).

CS193p

Winter 2017

UIScrollView
Zooming

All UIView’s have a property (transform) which is an affine transform (translate, scale, rotate).
Scroll view simply modifies this transform when you zoom.
Zooming is also going to affect the scroll view’s contentSize and contentOffset.

Will not work without minimum/maximum zoom scale being set
scrollView.minimumZoomScale = 0.5 // 0.5 means half its normal size
scrollView.maximumZoomScale = 2.0 // 2.0 means twice its normal size

Will not work without delegate method to specify view to zoom
func viewForZooming(in scrollView: UIScrollView) -> UIView
If your scroll view only has one subview, you return it here. More than one? Up to you.

Zooming programatically
var zoomScale: CGFloat
func setZoomScale(CGFloat, animated: Bool)
func zoom(to rect: CGRect, animated: Bool)

CS193p

Winter 2017

CS193p

Winter 2017

scrollView.zoomScale = 1.2

CS193p

Winter 2017

CS193p

Winter 2017

scrollView.zoomScale = 1.0

CS193p

Winter 2017

scrollView.zoomScale = 1.2
CS193p

Winter 2017

CS193p

Winter 2017

CS193p

Winter 2017

zoom(to rect: CGRect, animated: Bool)

CS193p

Winter 2017

CS193p

Winter 2017

zoom(to rect: CGRect, animated: Bool)

CS193p

Winter 2017

zoom(to rect: CGRect, animated: Bool)

CS193p

Winter 2017

zoom(to rect: CGRect, animated: Bool)

CS193p

Winter 2017

UIScrollView
Lots and lots of delegate methods!

The scroll view will keep you up to date with what’s going on.

Example: delegate method will notify you when zooming ends
func scrollViewDidEndZooming(UIScrollView,

with view: UIView, // from delegate method above
atScale: CGFloat)

If you redraw your view at the new scale, be sure to reset the transform back to identity.

